Non-adjacent Forms and their Playground

Daniel Krenn

Graz University of Technology, Austria

February 29, 2012

Supported by the Austrian Science Fund (FWF), projects W1230 and S9606.
Overview

Numbers

\[z = \sum_{j=0}^{\ell-1} \xi_j \tau^j \]

with base \(\tau \in \mathbb{C} \) and digits \(\xi_j \) in a digit set \(\mathcal{D} \).

- digit set too large \(\leadsto \) redundant representations
- want syntax on digits of \(z \) to gain uniqueness
The Non-Adjacent Form

Existence

Analysis

Optimality

Overview

Numbers

\[z = \sum_{j=0}^{\ell-1} \xi_j \tau^j \]

with base \(\tau \in \mathbb{C} \) and digits \(\xi_j \) in a digit set \(D \).

- digit set too large \(\leadsto \) redundant representations
- want syntax on digits of \(z \) to gain uniqueness
- Questions:
 - Existence of representations?
 - How often does a digit occur?
 - Is the syntax the best possible syntax?
Introduction

Problem

- Let P be an element of an Abelian group, $n \in \mathbb{N}_0$.
- Calculate

$$nP = P + \cdots + P$$

as efficient as possible.
Introduction

Problem

- Let P be an element of an Abelian group, $n \in \mathbb{N}_0$.
- Calculate

 $$nP = P + \cdots + P$$

 as efficient as possible.

- double-and-add algorithm, e.g., $29 = (11101)_2$,

 $$29P = 2(2(2(2(P + P) + P) + 0) + 1P$$
Introduction

Problem

- Let P be an element of an Abelian group, $n \in \mathbb{N}_0$.
- Calculate $nP = P + \cdots + P$
 as efficient as possible.

- double-and-add algorithm, e.g., $29 = (11101)_2$,
 $$29P = 2(2(2(2(1P) + 1P) + 1P) + 0) + 1P$$
- double-add-and-subtract algorithm, e.g., $29 = (100\overline{1}01)_2$,
 $$29P = 2(2(2(2(1P) + 0) + 0) − 1P) + 0) + 1P$$
Elliptic Curves over Finite Fields

Elliptic Curve

$$E: y^2 = x^3 + ax + b$$

- **Example.** Koblitz curve

 $$E_3: Y^2 = X^3 - X - 1$$

 defined over $$\mathbb{F}_3$$

- interested in the group

 $$E(\mathbb{F}_{q^m})$$

 of rational points of $$E$$

Figure: Elliptic curve $$Y^2 = X^3 - X + 1$$ over $$\mathbb{R}$$.
Frobenius-and-Add Method

- \(E(\mathbb{F}_{q^m}) \) group of rational points of elliptic curve \(E \) over a finite field
- Frobenius endomorphism

\[\varphi: E(\mathbb{F}_{q^m}) \rightarrow E(\mathbb{F}_{q^m}), \quad (x, y) \mapsto (x^q, y^q) \]

satisfies a relation \(\varphi^2 - p\varphi + q = 0 \)

- \(\varphi \) may be identified with an imaginary quadratic \(\tau \)
 that is a solution of \(\tau^2 - p\tau + q = 0 \)
- \(z \in \mathbb{Z}[\tau], \; P \in E(\mathbb{F}_{q^m}) \)

Computation of the Action \(zP \)

\[
z = \sum_{j=0}^{\ell-1} \xi_j \tau^j \quad \implies \quad zP = \sum_{j=0}^{\ell-1} \xi_j \varphi^j(P)
\]
Non-Adjacent Form: General Definition

- base τ, digit set \mathcal{D}
- numbers

$$z = \sum_{j \in \mathbb{N}_0} \xi_j \tau^j =: (\xi)_\tau$$

with digits $\xi_j \in \mathcal{D}$

- $w \in \mathbb{N}$ with $w \geq 2$
- ξ is a width-w
non-adjacent form (short w-NAF),
if each block of length w
contains at most one non-zero.

Figure: Values of 4-NAFs with MNR
digit set and $\tau = 1 + i$.
Digit Sets

- base τ imaginary quadratic, algebraic integer
- $w \geq 2$
- minimal norm representatives digit set modulo τ^w
 - 0
 - exactly one representative of each residue class modulo τ^w
 - not divisible by τ
 - which has minimal norm

Figure: Some MNR digit sets.
Existence and Uniqueness of the w-NAFs, $w \geq 2$, for

- base $\tau = 2$
- digit set $\mathcal{D} = \{0, \pm 1, \pm 3, \ldots, \pm (2^{w-1} - 1)\}$
 (Reitwiesner 1960, Solinas 2000, Muir–Stinson 2006)
- base τ is solution of $\tau^2 \pm \tau + 2 = 0$
- minimal norm representatives digit set modulo τ^w
 (Solinas 2000, Blake–Murty–Xu 2005)
- base τ is solution of $\tau^2 \pm 3\tau + 3 = 0$
- minimal norm representatives digit set modulo τ^w
 (Koblitz 1998, Blake–Murty–Xu 2005)
- base τ coming from Euclidean imaginary quadratic number field,
- minimal norm representatives digit set modulo τ^w
 (Blake–Murty–Xu 2008)
Existence and Uniqueness

- base τ imaginary quadratic, algebraic integer with $|\tau| > 1$
- minimal norm representatives digit set modulo τ^w, $w \geq 2$

Theorem (Heuberger–K. 2010)

Each element in $\mathbb{Z}[\tau]$ has a unique w-NAF-expansion.

Figure: Values of 3-NAFs with MNR digit set and $\tau = \frac{3}{2} + \frac{1}{2} \sqrt{-3}$.

Non-adjacent Forms and their Playground

Daniel Krenn
Occurences of a non-zero Digit in a Region

Theorem (Heuberger–K. 2010)

- base τ imaginary quadratic, algebraic integer with $|\tau| > 1$
- minimal norm representatives digit set \mathcal{D}
- $0 \neq \eta \in \mathcal{D}$
- $N \in \mathbb{R}_{\geq 0}$
- unit disc $U := B(0,1) \subseteq \mathbb{C}$

Then number of occurrences of the digit η
in all w-NAFs in the region NU is

$$Z(N) = e_w \pi N^2 \log_{|\tau|} N + N^2 \psi\left(\log_{|\tau|} N\right) + o(N^2).$$
Sketch of Proof

- based on Delange’s method
- counting

\[
Z(N) = \sum_{n \in NU \cap \mathbb{Z}[\tau]} \sum_{j \in \mathbb{N}_0} [\varepsilon_j(n) = \eta]
\]

- characteristic sets \(W_\eta \), approximations \(W_{\eta,j} \)
- equivalent conditions
 - \(j \)th digit of \(n \) equals \(\eta \)
 - \(\{ \tau^{-j-w}n \}_{\mathbb{Z}[\tau]} \in W_{\eta,j} \)
- rewriting the sum as integral

\[
Z(N) = \frac{1}{\lambda(V)} \sum_{j=0}^{J} \int_{x \in NU} \mathbb{1}_{W_{\eta,j}} \left(\left\{ \frac{x}{\tau j+w} \right\}_{\mathbb{Z}[\tau]} \right) dx + \text{‘small’ error terms}
\]

Figure: \(W_\eta \) for 2-NAFs with \(\tau = \frac{3}{2} + \frac{1}{2} \sqrt{-3} \).
Optimality

- base τ, digit set D
- expansions with digits out of D
- (Hamming-)weight of an expansion is the number of its non-zero digits
- expansion of z is optimal, if it minimizes the weight among all expansions of z with digits out of D
The Non-Adjacent Form

Existence

Analysis

Optimality

Optimality

- base τ, digit set D
- expansions with digits out of D
- \textbf{(Hamming-)}weight of an expansion is the number of its non-zero digits
- expansion of z is \textbf{optimal}, if it minimizes the weight among all expansions of z with digits out of D

\textbf{Theorem (Reitwiesner 1960)}

\textit{Let $\tau = 2$ and $D = \{-1, 0, 1\}$, then the 2-NAF of each integer is optimal.}

\textbf{Theorem (Avanzi 2004, Muir–Stinson 2004)}

\textit{Let $\tau = 2$, $w \geq 2$, and $D = \{0, \pm 1, \pm 3, \ldots, \pm (2^{w-1} - 1)\}$, then the w-NAF of each integer is optimal.}
The Non-Adjacent Form

Existence

Analysis

Optimality

Optimality

- base τ is solution of $\tau^2 - \mu \tau + 2 = 0$, $\mu \in \{-1, 1\}$
- minimal norm representatives digit set modulo τ^w, $w \geq 2$

Let $w \in \{2, 3\}$, then the w-NAF of each element of $\mathbb{Z}[\tau]$ is optimal.

Theorem (Heuberger 2010)

Let $w \in \{4, 5, 6\}$, then the w-NAF is not optimal.
Optimality

- base τ is solution of $\tau^2 - p\tau + q = 0$, $p, q \in \mathbb{Z}$ with $q - p^2/4 > 0$
- minimal norm representatives digit set modulo τ^w, $w \geq 2$

Theorem (Heuberger–K. 2011)

If one of the conditions
- $w \geq 4$ and $|p| \geq 3$,
- $w = 3$ and $|p| \geq 5$

holds, then the w-NAF of each element of $\mathbb{Z}[\tau]$ is optimal.
The Non-Adjacent Form

Existence

Analysis

Optimality

Optimality-Map

<table>
<thead>
<tr>
<th>Non-adjacent Forms and their Playground Daniel Krenn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimality-Map</td>
</tr>
<tr>
<td>(0, 9)</td>
</tr>
<tr>
<td>(0, 8)</td>
</tr>
<tr>
<td>(0, 7)</td>
</tr>
<tr>
<td>(0, 6)</td>
</tr>
<tr>
<td>(0, 5)</td>
</tr>
<tr>
<td>(0, 4)</td>
</tr>
<tr>
<td>(0, 3)</td>
</tr>
<tr>
<td>(0, 2)</td>
</tr>
<tr>
<td>pairs ((p, q)) with (\tau^2 - p\tau + q = 0)</td>
</tr>
</tbody>
</table>